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Exercise 1. (1) Let X be a TVS. For any u ∈ X and α ∈ R define τu,α(w) := u + αw. Show that τx,α is an
homeomorphism of X with itself. If X is a normed space, and |α| = 1, then it is also an isometry.

(2) Let X be a normed linear space. Show that X is a Banach space if and only if the ‘unit sphere’ S := {u ∈
X : ‖u‖= 1} is complete (in the norm-induced metric restricted to S).

Exercise 2. (1) Let X be a Banach space. If fn ∈ X and ∑‖ fn‖ < ∞, then show that ∑ fn converges in X (this
means of course, that if we define the partial sums gN := ∑n≤N fn, then ‖gN−g‖→ 0 for some g ∈ X).

(2) Conversely, if X is a normed linear space in which ∑ fn converges in X whenever ∑‖ fn‖ < ∞, then show
that X is a Banach space.

Exercise 3. Let (M,F ,µ) be a finite measure space. Assume that f ∈ L∞(µ) (then f ∈ Lp(µ) for all p). If tn =R
| f |ndµ, then show that tn+1

tn →‖ f‖∞. Hence or otherwise, show that ‖ f‖p →‖ f‖∞ as p→ ∞. [Note: This justifies
calling the esential supremum as the L∞ norm.]

Exercise 4. Let D be the open unit disk in the complex plane. Let H∞(D) denote the set of all bounded holomorphic
functions on D with the nom ‖ f‖= sup{| f (z)| : z ∈ D}. Show that H∞(D) is a Banach space.

Exercise 5. (1) Let V be a symmetric (x ∈V implies −x ∈V ) open neighbourhood of the origin in Rn. Define
‖x‖V = inf{r > 0 : r−1x ∈ V}. Show that ‖ ·‖V is a norm on Rn if and only if V is convex and bounded.
Here “bounded” is in the sense of the standard Euclidean metric.

(2) Show that ‖x‖ := (|x1|p + . . .+ |xn|p)
1
p is not a norm for 0 < p < 1.

[Remark: In a normed space, if V = {u : ‖u‖< 1}, then clearly ‖ ·‖= ‖ ·‖V . The idea is whether we can make
any TVS into a normed space by fixing an arbitrary V as the unit ball, and then defining the norm as ‖ · ‖V ? The
problem shows that even in Rn this does not always work. ]

Exercise 6. For 1≤ p≤∞, let Lp denote the Lebsgue space Lp([0,1],B,m) where B is the Borel sigma-algebra and
m is the Lebesgue measure. Show the completeness of Lp for p < ∞ by completing the following steps.

(1) If gn ∈ L1 and ∑
R
|gn| dm < ∞, show that ∑gn converges a.s.

(2) Given a sequence fn that is Cauchy in Lp, show that there is subsequence {nk} such that fnk converges a.s.
to some f . [Hint: One can write fnk = fn1 +( fn2 − fn1)+ . . .+( fnk − fnk−1). This suggest choosing nk so
that part (1) can be applied].

(3) Argue that f ∈ Lp and that fn
Lp
−→ f .
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